Armand Marie Leroi

La Lagune

Et Aristote inventa la science...

Flammarion

Glossaires

- glossaire technique
- les espèces mentionnées

Appendices

© by Armand Marie Leroi 2014 Bloomsbury Publishing Plc

AI Technical Glossary

ether
above
opposite position (anatomy)
analogue
highly sexed
foam
demonstration
origin/principle
left
indivisible form
spontaneous/self-moving things
glans
queen
king
lifestyle
swallow wind
amniotic sac
uterine body
Creator
right
difference/pl. (in some feature)
potentiality, potency, power
omasum/hedgehog/sea urchin/wide-mouthed jar
form/pl.
likely or plausible story
before
actuality
induction
dualizing
knowledge

euripos	strait
geêron	earth
genos/genê	kind/pl.
gêras	old age
gês entera	guts of the earth
gonê	semen
hippomanousi	nymphomaniac
historia tês physeôs	The study of nature
historiai peri ton zoon	Historia animalium [Enquiries into Animals]
holon	whole
hylê	matter
hystera	uterus/female reproductive organs
katamênia	menses
katô	below
kekryphalos	reticulum
keratia	uterine horns
kinêsis/kinêseis	movement/pl.
kotylêdons	cotyledons/caruncles
limnothalassa	lagoon, lit. lake sea
logos	definition, essence
lysis	relapse/mutation
mathematikê	mathematics
megalê koilia	rumen
metabolê	transformation
mêtra	cervix
mixis	compound
mues	muscles
mythos	story
mytis	cephalopod 'heart' (i.e. its digestive gland)
neuron/neura	sinews/pl.
nous	reason
oíkoumenê	known world
onta	things
opisthen	behind
organon	instrument/too/organ
ornithiai anemoi	bird winds
ousia/ousiai	substance, entity/pl.
pepeiramenoi	to have tried or tested something
peri physeos	on nature

phainomena	appearances
phantasia	mental representation
phantasma	mental images
physeos	nature
physikê epistêmê	natural science, lit. study of nature
physikos	one who understands nature
physiologos/physiologoi	one who studies nature/pl.
pneuma	pneuma
polis	city state
politikê epistêmê	political science
prôton stoicheion	first element
psychê	soul
sarx	flesh (i.e. muscles)
soma	body
sperma	seed
stoma	mouth
stomachos	oesophagus
sungenis	kindred
symmetria	proportion
symphyton pneuma	connate breath
synthesis	mixture, agglomeration of parts
ta aphrodisia	sexual intercourse
technika	skilled activities
telos	end
theologikê	theology
theos	god
thesis	position (anatomy)
to agathon	the good
to hou heneka	that for the sake of which
trophê	nutrition/way of life
zôiê	livelihood

Animal Kinds Mentioned

Considering this mass of valuable information, one must particularly regret that the author [Aristotle] did not suspect that the nomenclature of his time might become opaque, and that he therefore took no precautions to ensure that the species he discusses are recognizable. This is the general defect of the ancient naturalists; one is almost obliged to guess the identities behind the names they used; the often changing tradition induces error; thus it is by arduous deduction, and bringing together features scattered among authors, that one gets a positive result for some species; but we are condemned to remain ignorant of the majority of them.

> Georges Cuvier and Achille Valenciennes, Histoire naturelle des poissons (1828–49)

The task of identifying Aristotle's animals started around 1256 when Albert Magnus began to assemble his *De animalibus* based, in part, on *Historia animalium*. Zoologically minded classicists and classically minded zoologists have been at it ever since. They have had mixed success. Aristotle's descriptions of his animals are often so thin as to defy identification. However, other classical texts using the same or similar names provide clues, as do the vernacular names used by modern Aegean and Adriatic fishermen and hunters. Biogeography helps too. Or one can simply go to the Lagoon to see what's there. One scholar who did so plausibly identified Aristotle's *kobios* as any of three species of goby and his *phycis* as the blenny, *Parablennius sanguinolentus*.*

Although generations of scholars have laboured to identify Aristotle's animals, there is no recent, comprehensive list of them. For this reason I tabulate the 230-odd Aristotelian animal kinds mentioned in this book, along with my best guess as to what they are. Scholars have varied in their

* Tipton (2006).

willingness to pin Aristotelian kinds down to Linnaean species. Some are enthusiastic while others think that it can hardly be done at all. I have taken the middle road. After all, when Aristotle says *hippos*, he must mean *Equus caballus*, that is a horse – at least when he doesn't mean the *hippos* crab or the *hippos* woodpecker. When, however, he says *kephalos* we are less sure. He certainly means a grey mullet since that's what they're still called in Greece today, but he could mean any or all of *Mullus cephalus* (flathead grey mullet), *Chelon labrosus* (thicklip grey mullet), *Oedalechilus labeo* (boxlip mullet), *Liza saliens* (leaping mullet), *Liza aurata* (golden grey mullet) or *Liza ramada* (thinlip grey mullet), all of which are found in Greek waters and are notoriously hard to tell apart.* Moreover, Aristotle mentions at least four different fishes that are plausibly grey mullets, so it's likely that he, and fishermen, distinguished at least some of the six modern nominal species. But which of Aristotle's grey mullets correspond to ours must probably always remain a mystery.

There is also a trap for the unwary. Linnaeus and other early taxonomists often gave their European species classical names on the basis of ancient descriptions. Sometimes they were right to do so. Linnaeus' *Chamaeleo chamaeleon –* the European chameleon – is certainly Aristotle's *chamaileo* since it's the only lizard that answers to his detailed description.[†] Sometimes, however, they were on much less certain ground. Linnaeus thought that Aristotle's *rinobatos* was the guitarshark so he called the guitarshark *Rhinobatos rhinobatos*; and since both the fish and what Aristotle says about it are interesting, it's nice to think that that is what it actually is, but we can't be sure since he doesn't say much.

My list is based on several editions of *Historia animalium* and *The Parts of Animals*[‡] as well as monographs on ancient animals.§ I have tried to make ambiguity plain. In general, large mammals can be identified to modern species; birds to genus or not at all (*Historia animalium* contains a swathe of strange, possibly Egyptian or Babylonian, bird names); fish to species,

* Koutsogiannopoulos (2010).

§ KITCHELL (2014) on mammals and some other animals, THOMPSON (1895) and ARNOTT (2007) on birds, THOMPSON (1947) on fishes, DAVIES and KATHIRITHAMY (1986) on insects, SCHARFENBERG (2001) on cephalopods and VOULTSIADOU and VAFIDIS (2007) on marine invertebrates.

[†] True, the African chameleon, *Chamaeleo africanus*, occurs in Pylos in the Peloponnese, but that's thought to be a Roman introduction. Why the Romans should have carried chame-leons around the Mediterranean basin is hard to say.

[‡] HA: CRESSWELL and SCHNEIDER (1862), PECK (1965), PECK (1970) and BALME (1991). PA: OGLE (1882), LENNOX (2001a) and KULLMANN (2007).

genus or family depending on their prominence, uniqueness and depth of description; insects mostly to family or order; marine invertebrates anywhere from species to phylum. For a few of Aristotle's creatures, however, we can say little more than that they are probably animals and that they live in the sea.

English name	Aristotle's name	Linnaean name
ANIMALS	ZôA	METAZOA
BLOODED ANIMALS	ENHAIMA	VERTEBRATA
man (humans)	anthrôpos	Homo sapiens
live-bearing tetrapods	zoiôtoka tetrapoda	Mammalia (most)
ass, Asian wild (onager)	onos agrios	Equus hemionus
ass, Asian wild (onager)?	hêmionos*	Equus hemionus?
ass, domestic (donkey)	onos	Equus africanus asinus
baboon, hamadryas	kynokephalos	Papio hamadryas
bear, Eurasian brown	arktos	Ursus arctos arctos
beaver, Eurasian	kastôr	Castor fiber
bison, European	bonassos	Bison bonasus
camel, Arabian (dromedary)	kamêlos Arabia	Camelus dromedarius
camel, Bactrian	kamêlos Baktrianê	Camelus bactrianus
cat	ailouros	Felis silvestrus cattus
cattle	bous	Bos primigenius
cattle, wild	tauros	Bos primigenius (auroch)
deer, red?	elaphos	Cervus elephas?
deer, roe	prox	Capreolus capreolus
dog	kyôn	Canis lupus familiaris
dog, Molossian	kyôn xxxxxxxxxx	Canis lupus familiaris (mastiff)
dog, Laconian	kyôn xxxxxxxxxxx	Canis lupus familiaris (hound)
dog, Indian	kyôn Indíkos	Canis lupus familiaris (Indian
		pariah dog?)
dormouse	eleios	Gliridae
elephant, Asian†	elephas	Elaphas maximus
fox	alôpêx	Vulpes vulpes
gazelle, dorcas	dorkas	Gazella dorcas
unknown bovid	pardion	Bovidae
giraffe?	hippardion	Giraffa camelopardis?

* Aristotle also uses this term for the regular mule; its relationship to the onager is unclear; see KITCHELL (2014).

⁺ Aristotle does not say where his elephant was seen; it is most likely the Asian elephant on the basis of its association with Alexander's expeditions alone.

goat, ram	tragos	Capra aegagrus
goat, ram	chimaira	Capra aegagrus
goat, ewe	aïx	Capra aegagrus
hare, European	dasypous	Lepus europaeus
hare, European	lagôs	Lepus europaeus
hartebeest	boubalis	Alcelaphus buselaphus
hedgehog, northern	echinos	Erinaceus roumanicus
hippopotamus	hippos potamios	Hippopotamus amphibius
horse	hippos	Equus caballus
hyena, striped*	hyaina	Hyaena hyaena
hyena, striped	glanos	Hyaena hyaena
hyena, striped	trochos	Hyaena hyaena
jackal, golden?	thôs+	Canis aureus?
jerboa	dipous‡	Dipodidae
leopard	pardalos	Panthera pardus
lion, Asian	leôn	Panthera leo persica
lynx, Eurasian	lynx	Lynx lynx
macaque, Barbary	píthêkos	Macaca sylvanus
macaque, Rhesus?§	kêbos	Macaca mulatta?
mole, Mediterranean¶	aspalax	Talpa caeca

* Beginning with WATSON (1877), there's a long, and incorrect, consensus that Aristotle's *glanos/hyena* is the spotted hyena, *Crocuta crocuta*, but the mane alone identifies it as the striped hyena *Hyena hyena*. Furthermore, Aristotle's description of its genitals doesn't fit the massively masculinized genitalia of *Crocuta* females. I assume that the *trochos* is the same animal, but that's less certain; see FUNK (2012). KITCHELL (2014) says that Oppian distinguished the spotted and striped hyena, so perhaps the former wasn't entirely unknown to the ancients.

[†] KITCHELL (2014) points out that this animal has a bewildering number of identifications. It may be jackal, civet or some sort of viverrid.

[‡] This is the ancient Greek name for the animal. Aristotle does not actually use it, but just speaks of mice with long legs or that walk on their hind legs – clearly the jerboa.

§ Aristotle mentions three non-human primates: the *kynocephalos*, *pithêkos* and *kêbos* (excluding the textually dubious *choreopithêkos* of HA 503a19). The *kynocephalos* is certainly the Egyptian baboon, *Papio hamadryas*, since it has a doglike face and no tail; the *pithêkos* is said to have a short tail and so is likely the Barbary macaque, *Macaca sylvanus*. The *kêbos* is said to have a tail, but the tailed African *Cercopithecus* are all sub-Saharan, so perhaps it's a report of the Asian rhesus macaque, *Macaca mulatta*, from Alexander's expedition. See KULLMANN (2007) p. 709 and KITCHELL (2014).

● The *aspalax* could be the naked mole rat, *Spalax*, of Asia Minor or the Mediterranean mole, *Talpa caeca*. Both *Spalax* and *T. caeca* are blind and have eyes covered in skin, but the latter seems more biogeographically plausible. (*T. europea*, the common European mole, is found north of the Alps and is disqualified by its small, but externally visible, eyes.)

mongoose, Egyptian	ichneumôn	Herpestes ichneumon
mouse	mus	Mus sp.
mouse, field	arouraios mus	Apodemus sp.
mouse, spiny	echinees	Acomys sp.
mule	oreus	Equus africanus asinus (m) $ imes$ Equus
		caballus (f)
mule	hêmionos	Equus africanus asinus (m) $ imes$ Equus
		caballus (f)
mule (hinny)	ginnos	Equus caballus (m) $ imes$ Equus africanus
		asinus (f)
nilgai	hippelaphos	Boselaphus tragocamelus
oryx	oryx	Oryx sp.
otter	enhydris	Lutra lutra
pig	hys	Sus scrofa domesticus
porcupine, crested	hystrix	Hystrix cristata
rhinoceros, Indian*	onos Indíkos	Rhinoceros unicornis
seal, monk	phôkê	Monachus monachus
sheep	krios	Ovis aries
sheep	oïs	Ovis aries
sheep	probaton	Ovis aries
shrew	mygalê	Soricidae
tiger	martichôras	Panthera tigris
marten	iktis	Martes sp.
weasel	galê	Mustela sp.
wolf, grey	lykos	Canis lupus
cetaceans	kêtôdeis	Cetacea
dolphin	delphis+	Delphinidae
whale	phalaina	Odontoceti

THOMPSON (1910) *n.* HA 491B30 favours *T. caeca* simply because it rather more common than *Spalax* in the areas that Aristotle knew personally; see KULLMANN (2007) p. 457. * The *onos Indíkos* is generally thought to be an Indian rhinoceros (OGLE 1882 p. 190, THOMPSON 1910 *n.* 499b10). LONES (1912) p. 255, looking at its feet, disagrees. Lones is right to say that the rhinoceros has three toes and the *onos indícus* one, but the rhino's central toe is much larger than the others and so could easily be mistaken for a hoof. † Likely the bottlenose dolphin, *Tursíops truncatus*, but Aristotle does not distinguish the several Delphinid spp. found in the Aegean.

birds	ornis	Aves
bee-eater, European	merops	Merops apiaster
blackbird	kottyphos	Turdus merula
bustard, great	ôtis	Otis tarda
chaffinch	spiza	Fringilla coelebs
chicken	alektôr	Gallus domesticus
chicken, Adrianic	adrianikê	Gallus domesticus
cormorant, great	korax	Phalacrocorax carbo
crane, Eurasian	geranos	Grus grus
crow, hooded	korônê	Corvus corone
cuckoo	kokkyx	Cuculus sp.
dove, turtle	trygôn	Streptopelia turtur
duck, teal?	boskas	Anas crekka?
eagle	aietos	Aquíla
flamingo, greater*	phoinikopteros	Phoenicopterus ruber
nightjar	aígothêlas	Caprimulgus europaeus
goldcrest	tyrannos	Regulus regulus
goose	chên	Branta sp.
grebe, great crested	kolymbis	Podiceps cristatus
vulture	aigypios	Aegypius sp.
hawk	hierax	Accipitridae, small
heron	pellos	Ardea sp.
hoopoe, Eurasian	epops	Upapa epops
ibis†	íbis	Threskiornithidae
jay, Eurasian	kissa	Garrulus glandarius
kestrel	kenrichis	Falco sp. tinnunculus or F. naumanni
kingfisher	alkyôn‡	Alcedo atthis
kite	iktinos	Mílvus sp.
lark	korydalos	Alaudidae
nuthatch, rock	kyanos	Sítta neumayer
ostrich	strouthos Líbykos	Struthio camelus

* Not mentioned by Aristotle, but now very common in Kalloni. The only references to a flamingo (or what might be one) in ancient Greece are in Aristophanes' *Birds*, 273 and Heliodorus.

† Either the glossy ibis, *Plegadis falcinellus*, found in Greece (Kalloni) or the sacred ibis, *Threskiornis aethiopicus*, found in Egypt.

[‡] May also refer to a species of tern.

owl, little*	glaux	Athene noctua
owl, Ural?	aigôlios	Strix uralensis?
partridge	perdix	Alectoris or Perdix
pelican, Dalmatian	pelekan	Pelecanus crispus
pigeon	peristera	Columba sp.
pigeon, wood	phatta	Columba palumbus
quail	ortyx	Coturnix vulgaris
raven	korax	Corvus corax
seagull	laros	Laridae
sparrow	strouthos	Passer sp.
stilt, black-winged	krex+	Himantopus himantopus
stork, white	pelargos	Ciconia ciconia
swallow	chelidôn	Hirundo rustica
tit	aigithallos	Parus sp.
tit, coal	melankoryphos	Parus ater
turtle dove	trygôn	Streptopelia turtur
woodpecker‡	dryokolaptês	Dendrocopus sp.
woodpecker	hippos	Dendrocopus sp.
woodpecker	pipô	Dendrocopus sp.
woodpecker, green	keleos	Picus viridis
wren	trochílos	Troglodytes troglodytes

* Athena's owl. The ancient proverb 'bringing owls to Athens' is the Greek equivalent of bringing coals to Newcastle.

⁺ Traditionally identified as the corncrake, *Crex crex*; but this is dubious and the *krex* is mentioned by Aristotle as a long-legged waterbird with a short hind toe and a quarrelsome disposition (THOMPSON 1895 p. 103; ARNOTT 2007 p. 120) which does not fit the corncrake well, but does the black-winged stilt.

[‡] Dryokolaptês is a general name for woodpecker (literally 'tree-pecker'). Aristotle (HA 593a5, HA 614b10) speaks of at least four kinds of woodpecker as well as the hippos, some of which are easily identified, others not. When he refers to a small woodpecker with reddish speckles he must mean Dendrocopus minor since it is the only small woodpecker found in Greece that answers to the description. When he refers to a larger woodpecker that nests in olive trees he must mean D. medius since it is the only species to do so; interestingly it does so only in Lesvos (Filios Akreotis, pers. comm.). When he refers vaguely to a 'larger' species he could mean one of the three large Dendrocopus: the white-backed, D. leucotos; Syrian, D. syriacus or greater spotted, D. major, which are all about the same size (8–10 inches). Hippos may be a copyist's error for pipô. In addition to these Aristotle refers to a green woodpecker, clearly Picus viridis. See THOMPSON (1895) and ARNOTT (2007).

egg-laying tetrapods	ôiotoka tetrapoda	Reptilia* + Amphibia
chameleon	chamaileôn	Chamaeleo chamaeleon chamaeleon
crocodile	krokodeilos potamios	Crocodylus niloticus
gecko, Turkish?	askalabôtês	Hemidactylus turcicus?
lizard	sauros	Lacertidae
tortoise	chelônê	Testudo sp.
terrapin	emys	Mauremys rivulata?
turtle	chelônê thallatía	Cheloniidae
snakes	opheis	Serpentes
snake, water	hydros	Natrix tessalata?
snake, large	drakon	Serpentes
Ottoman viper	echidna	Vipera xanthina
fishes	icthys	Chondrichthyes + Osteichthyes
blenny, rusty?	phycis+	Parablennius sanguinolentus?
blotched picarel	maenis	Spicara maena
catfish, Aristotle's	glanis	Silurus aristotelis
comber	channos	Serranus cabrilla
comber, painted	perkê	Serranus scríba
eel, European	enchelys	Anguilla anguilla
goby	kôbios	Gobius cobitis?
ʻgoby, white'	leukos kôbios	unknown
gurnard	kokkis	Triglidae
gurnard	lyra	Triglidae
John Dory	chalkeus	Zeus faber
mullet, grey	chelôn	Mugilidae
mullet, grey	kephalos	Mugilidae
mullet, grey	kestreys	Mugilidae
mullet, grey	myxinos	Mugilidae
mullet, red	trigle	Mullus sp.

* Not a valid taxon; now the Sauropsida, which includes birds as a clade of dinosaurs.

 $^{+}$ The phycis been variously identified as a goby (Gobius niger), a species of wrasse (e.g. Symphodus ocellatus).

THOMPSON 1910 n. HA 567b18, THOMPSON (1947) pp. 276–8, or a blenny (*Parablennius sanguinolentus*), TIPTON (2006). It's hard to know since all of these are found in Kalloni or its surrounds and the description is vague and may be confused with other fishes.

parrotfish	skaros	Sparisoma cretense
pipefish	belonê	Syngnathus sp.
salema	salpê	Sarpa salpa
scorpionfish	skorpaina	Scorpaena scrofa
sea bass, European	labrax	Dicentrarchus labrax
sea bream, annular	sparos	Diplodus annularis
sea bream, gilthead	chrysophrys*	Sparus aurata
sea bream, pandora	erythrinos	Pagellus erythrinus
sea bream, striped	mormyros	Lithognathus mormyrus
sea bream, white	sargos	Diplodus sargus sargus
sea perch, swallowtail	anthias	Anthias anthias
shad	thritta	Alosa sp. or another Clupeid
smelt, sand	atherinê	Antherína presbyter
tuna, blue fin	thynnos	Thunnus thynnus
unknown	korakinos	unknown
unknown, sardine-like	chalcis	Clupeidae
unknown, sardine-like	membras	Clupeidae
unknown, sardine-like	trichis	Clupeidae
cartilagenous fishes	selachê	Chondrichthyes
angelshark	rhine	Squatina squatina
dogfish, smooth	leios galeos	Mustelus mustelus
dogfish, spiny	akanthias galeos	Squalus acanthias
dogfish, spotted	skylion	Scyliorhinus sp.
frogfish ⁺	batrachos	Lophius piscatoris
guitarfish?	rhinobatos	Rhinobatos rhinobatos?
ray, torpedo	narkê	Torpedo torpedo
skate or ray	batos/batis	Rajiformes
shark	galeos	Galeomorphi + Squalomorphi

unclassified blooded animals

tadpole or eft	kordylos	Amphibia
bat	nykteris	Microchiroptera
fruit bat, Egyptian (flying fox)	alôpêx	Rousettus aegyptiacus

* Sometimes confused with *Chrysophrys auratus*, an Indo-Pacific fish, due to a complicated history of synonomy.

⁺ Contra Aristotle, the frogfish is not a cartilagenous fish.

BLOODLESS ANIMALS ANHAIMA

'soft-shells'

crab crab, fan mussel crab, ghost lobster shrimp shrimp, fan mussel spiny lobster shrimp, mantis

'soft-hodies'

cuttlefish

octopus, common

octopus, musky octopus, musky

octopus, musky

paper nautilus

squid, sagittal

'hard-shells'

squid, European

malakostraka

karkinos pinnophylax hippos astakos karis pinnophylax karabos krangôn

malakia

Invertebrata*

Crustacea (most)

Brachyura Nepinnotheres pinnotheres Ocypode cursor Homarus gammarus Nantantia + Stomapoda Pontonia pinnophylax or similar spp. Palinurus elephas Squilla mantis

Cephalopoda

sêpia polypodon megiston genos boilitaina heledônê ozolis nautilos polypous teuthis teuthos

ostrakoderma

Sepia officinalis Octopus vulgaris Eledone moschata Eledone moschata Eledone moschata Argonauta argo Loligo vulgaris Todarodes sagittatus

Gastropoda + Bivalvia + Echinozoa + Ascidiacea + Cirripedia

konchos rhabdotos trachyostrakos Cardidae Patella sp. lepas pinna Pinna nobilis limnostreon Ostrea sp. Solenidae? sôlên kteis Pectinidae

* Not a valid taxon.

† Aristotle says the sôlên can't live if torn off a rock. Elsewhere, however, he says that it is free living and might be able to hear. One of these must be wrong. The sôlên is traditionally identified as the razor-clam (Solenidae), a sand-burrower, and among the most active and perceptive of all bivalves.

cockle limpet mussel, fan oyster razorfish?† scallop

sea urchin, edible sea urchin, long-spine sea squirt snail. murex snail, murex snail, trumpet snail. turban

'divisibles'

entoma

myrmêx

têthyon

porphyra

porphyra

kēryx

nêreitês

esthiomenon echinos

echinos genos mikron

ant bee, honey (drone) bee, honey (queen, lit. king) bee, honey (queen, lit. leader) hêgemôn bee, honey (worker) beetle, dung butterfly centipede or millipede cicada clothes moth cockchafer

flea fly fly, horse grasshopper locust louse mayfly pseudoscorpion scorpion spider tick wasp wasp, hunting

kêphên basileus melissa kantharos psychê ioulos tettix sês mêlolonthê

psylla myia myôps akris attelabos phtheir ephêmeron to en tois bibliois gignonmenon skorpoiodes* skorpios arachnê kynoroestes sphêx anthrênê

Paracentrotus lividus Cidaris cidaris Ascidiacea Haustellum brandaris Hexaplex trunculus Charonia variegata Monodonta sp.?

Insecta + Chelicerata + Myriapoda

Formicidae Apis mellifera Apis mellifera Apis mellifera Apis mellifera Scarabaeoidea Lepidoptera Myriapoda Cicada sp. Tínea sp. Geotrupes sp.

- Siphonaptera Diptera Tabanus sp. Acrididae Acrididae Phthiraptera Ephemeroptera
- Chelifer cancroides Scorpio sp. Araneae Ixodes ricinus Vespidae Vespidae

* Literally 'scorpion found within books'.

wasp, fig wasp, parasitoid

psên kentrinês Blastophaga psenes Philotrypesis caricae?

unclassified

C 1 1		- 1:
fish louse	ostros o tôn thynnon	Caligus sp.
hermit crab	karkinion	Paguroidea
jellyfish?	pneumôn*	Scyphozoa?
red coral	korallion	Corallium rubrum
sea anemone	knidê	Actinaria
sea anemone	akalêphê	Actinaria
sea cucumber?	holothourion+	Holothuria?
sponge	spongos	Dictyoceratida
sponge, black Ircinia	aplysias	Sarcotragus muscarum?
starfish	astêr	Asteroidea
worm	helminthes	Plathyhelminthes, Annelida,
Nematoda etc.		
worm, tape	plateion genos helmithos	Taenia sp.
worm, nematode ('round')	strongyleion	Ascaris?
worm, unknown	askarid	unknown

* VOULTSIADOU AND VAFIDIS (2007) identify this as the dead man's fingers sponge, *Alcyonium palmatum*. That's plausible too.

† VOULTSIADOU AND VAFIDIS (2007) identify this as the soft coral, Veretillum cynomorium. That's plausible too.

Technical Appendices

Here I present some of Aristotle's data and models as he might were he writing now: in tables and diagrams. Such devices are not in principle un-Aristotelian since he clearly used abstract models to explain biological phenomena at least occasionally – for example, when he explains animal geometry in PA or perception and movement in MA.* Nevertheless, my justification for using them does not rest upon such examples, for my purpose is not to reproduce his methods, but rather to understand the strengths and weaknesses of his data and his explanations. The absence of data tables in his work is particularly painful: he can take a book (e.g. HA VI on avian life history) to explain patterns that would now be summarized in a single table in Nature - and in the Online Supplementary Information at that. In the same way it is also impossible to know whether the heart-lung cycle he gives in JSVM 26 really works as he says it does without building a control model or else a physical analogue - and the first seems a lot easier. Classical philosophers may shy at the resulting tables and diagrams; to them such devices may seem incongruously modern. I would ask them to view them merely as tools analogous to their use of modern symbolic notation to explicate and test the coherence of Aristotle's logic. Scientists will be less fussed; to them, the utility of such devices will seem obvious and they will only wonder how Aristotle got as far as he did using mere words. I would ask them to remember that, although he was smart, he did live a long time ago.

BI. A DATA MATRIX FOR TWELVE ARISTOTELIAN KINDS AND SIX Morphological features

This table displays some of the morphological features that Aristotle thinks some animals have. His information is not always correct. For convenience the feature states are first coded as integers. If Aristotle thinks an animal kind has more than one feature state this is indicated with a slash, for example O/I; intermediate states are indicated as 0.5; no data as 'NA' This table is based on the following sources. **Foot type**: lion, dog, sheep, goat, deer, hippopotamus, horse, mule, pig, HA 499b5.

* NATALI (2013) ch. 3.3.

Coding	I		
feature	state		
tooth no.	teeth in upper jaw ≠ teeth in lower jaw	0	
	teeth in upper jaw = teeth in lower jaw	1	
tooth shape	flat		
	saw	1	
	tusks	2	
stomach	simple	0	
	complex	1	
horns	absent	0	
	present	1	
feet	solid-hooved	0	
	cloven-hoofed	1	
	multi-toed	2	
astragalus	absent	0	
	present	1	
	l		

Matrix	feature kind	tooth no.	tooth shape	stomach	horns	feet	astragalus	. 1 1 1
	ох	0	0	1	1	1	1	to be resupplied
	goat	0	0	1	1	1	1	
	sheep	0	0	1	1	1	1	
	deer	0	0	1	1	1	1	
	camel	0	NA	1	0	1	1	
	pig	1	2	0	0	1/0	1/0	
	horse	1	0	0	0	0	0	
	mule	1	0	0	0	0	0	
	elephant	NA	0/2	1	0	2	0	
	lion	1	1	0	0	2	0.5	
	dog	1	1	0	0	2	0	
	human	1	1	0	0	2	0	

Astragalus with foot type: lion, pig, man, cloven-hoofed animals, solid-hoofed animals, HA 499b20; human HA 494a15; camel HA 499a20. Horns with cloven hoofs: ox, deer, goat HA 499b15. Tooth number and horns: horned animals, camels, HA 501a7, HA 499a22. Tooth type and horns: pig, lion, dog, horse, ox, HA 501a15; elephant HA 501b30. Stomach type and horns and tooth number: HA 495b25; HA 507b30, human HA 495b25. The feature matrix shows a strong association between the various features that Aristotle describes. These associations then become the target of explanations. This table could be expanded to include more kinds and features, but I do not do so since for these either his data are incomplete or he makes little of them.

B2. RESOURCE (TROPHÊ) ACQUISITION AND ALLOCATION PATHWAY FOR A LIVE-BEARING TETRAPOD (A MAMMAL)

This diagram summarizes Aristotle's vision of the metabolic system, how nutrition is taken up, transformed and allocated to its various ends. The arrows represent material flows. Aristotle's 'uniform parts' are roughly equivalent to our tissues except that he is emphatic they have no microscopic structure such as atoms or cells. All uniform parts derive from blood, itself a uniform part. There are two great branches in the network, earthy uniform parts and fatty uniform parts, with flesh being at the terminus of a branch of its own. All reactions produce waste; and all uniform parts are broken down into waste and excreted, giving an open system. Some nutrition goes to fuel the internal fire. The nodes represent specific transformations of nutrient. The supporting statements for network are as follows. Blood is the final/universal nutriment: PA 650a34, PA 651a15. Flesh is made from the purest nutriment and bones, sinews etc. are residues: GA 744b20. Flesh is concocted blood and fat is the surplus blood left over from this: PA 651a 20. Fat is concocted blood: PA 651a21. Fat can be soft or hard (suet or lard): PA 651a20. Semen comes from blood, specifically from the part that forms fat: PA 651b10; GA 726a5. Marrow is partially concocted blood: PA 651b20. Hoofs, horns and teeth are related to bone: PA 655b1, PA 663a27. Bones and marrow are made from a common precursor: PA 652a10. Cartilage and bone are fundamentally the same thing: PA 655a27. Deposits from the bladder and gut are residues of nourishment: PA 653b10. Bile is a residue of nourishment: PA 677a10.*

* See LEROI (2010) for further details.

- LEGEND
- ${f N}$ nutrition
- B blood
- H hooves, hair, nails
- T teeth
- M marrow
- C cartilage
- O bone
- F flesh
- L lard
- U suet
- S semen
- V vaginal secretions, menstrual fluid, milk
- E excreta: urine, bile, faeces

B3. THE CIOM MODEL OF PERCEPTION AND ACTION

This diagram represents the Centralized Incoming Outgoing Motions model of how Aristotle supposes animals transmit perceptual information from the peripheral sense organs to the sensorium (the heart), how this information is integrated with respect to the animal's goals and how it is transformed into movement in its limbs via the action of pneuma and the mechanical workings of the sinews.* The arrows represent causal relations.

* GREGORIC and CORCILIUS (2013).

B4. CONTROL DIAGRAM OF ARISTOTLE'S HEART-LUNG THERMOREGULATORY CYCLE

This is the simplest of many possible models that could describe the heart-lung cycle that Aristotle sketches in JSVM 26.* The arrows represent control relations. To make Aristotle's model work we need various assumptions explicit that he does not. Here, we assume that the animal has an ideal 'reference' temperature, T. The goal of the system is to maintain the temperature of the heart, T_{μ} , at that temperature. The system works in the following way. Nutrition enters the heart and is concocted. The temperature of the nutrition (now blood), T_n , rises above the reference temperature. If that increase in temperature is sufficient to exceed heat loss due to diffusion (see below), it will increase the heart temperature, T_{μ} . Since lung volume is a function of the difference between T_{h} and T_{r} lung volume increases. This results in an increase in the rate of air flow through the mouth, F. Since air temperature, T_a , is lower than the reference temperature, heart temperature declines and the lung contracts. The result is a negative feedback control system. Note that we allow for the constant loss of some fraction of heart heat by diffusion, perhaps via the brain that, in Aristotle's view, acts as a radiator. This will tend to damp the system making it less sensitive to increases in T_n and gives an equilibrium at T_r. This system will work only if air temperature is lower than the ideal reference temperature. If, however, T_a & T_e, then no amount of air will reduce T_b, the negative feedback loop will become an unstable positive feedback loop, and the animal's lungs will stay permanently open or permanently closed, either way extinguishing the fire (due to excess cold or consumption of all the nutrient), thus resulting in death. As described here, the system will tend to a stable dynamic equilibrium rather like a thermostat. However, if additional delays or non-linearities are included, it will produce the oscillatory behaviour that Aristotle supposed explained the lung's movements. The model was produced with the kind help of David Angeli, Electrical Systems Control Group, Imperial College London.

[C204]

* King (2001) pp. 126–9.

b5. aristotle's life-history data: live-bearing tetrapods and birds

These tables summarize Aristotle's life-history data. His data are a bit more complex than the tables suggest and, again, are not always correct. Since Aristotle does not have descriptive statistics, he often says that something is 'generally' the case; if so, that is the value I give. If he gives a range, I report a median but ignore exceptional cases. When he says that he is uncertain (e.g. about the great lifespan of the elephant or the short lifespan of the sparrow) I have indicated this with a u. In some cases Aristotle does not explicitly say that a particular kind has some value for a given life-history variable, but just speaks generally about the megista genos - for example, 'very few birds propagate in their first year'. In such cases, I have indicated the value as belonging to all kinds within that greater kind unless noted otherwise; but in cases where he does not say explicitly that a value applies to a megista genos I have not assumed it. For example, he probably knows that most large live-bearing tetrapods (mammals) have one brood per year, but he does not say so. The exception to this rule is body size. Aristotle never reports quantitative data for body size, nor even whether an animal is big or small except in the context of a functional explanation. From such explanations, however, it's clear that he thinks a human or an ostrich is 'large', a pig or a chicken is 'medium sized' and a cat or sparrow is 'small' relative to the megista genos to which each belongs; I have filled in appropriate body sizes accordingly. Most of these data come from HA V and VI; data on embryonic perfection come from GA IV. Aristotle argues correctly that multi-toed animals (fox, bear, lion, dog, wolf, jackal etc.) have imperfect young; solid- and split-hoofed animals (cow, horse) have perfect young. The pig is an oddity, being split-hoofed and having relatively perfect offspring. Among the birds, Aristotle names ravens, jays, sparrows, swallows, ring doves, turtle doves and pigeons as having imperfect neonates - but doesn't name any perfect ones. He probably bases his generalizations on more data than he reports.

[C205a, b]

zoiōtoka tetrapoda live-bearing tetrapods

footuro	S	М	L	С	N	G	Р	
kind		(years)	(years)	(per year)		(months)		
mouse	s				many			
hare	S				4		I/P	
cat	S		6 I		<8		1	
mongoose	S		6 I		<8		1	
jackal	S				4		1	
goat	М	1	8 I		1.5	5	Р	
sheep	М	1	10 I		<4	5	Р	
pig	М	0.75	15 I		<20	4	Р	
wolf	М				<8	2	1	
dog	М	0.9			<8	2	1	
leopard	М		12 I		4		1	
lion	М		5 I	1	4		1	
bear	L				3.5	1/9	1	
horse	L	3	37 I	1	1.5	11	Р	
ass	L	3	30 I	1		12	Р	
cattle	L	1.5	15 I		1.5	9	Р	
deer	L				1.5		Р	
camel	L	3	>50 I		1	10	Р	
human	L	<21	40f/70m rl		1	9.5		
elephant	L	7	250 <i>u</i> I	1	1	30		

LEGEND

- S adult body size: Large, Medium, Small
- M age at maturity
- L lifespan: I simple lifespan, rl reproductive lifespan
- C broods per year
- N brood size
- G gestation time
- P relative perfection: Perfect, Imperfect

ornis birds

feature	S	м		С	N	G		
kind		(years)	(years)	(per year)		(months)		
coal tit	S	>1*		1	>20			
tit	S	>1		1	many			
sparrow	s	>1	1 <i>u</i>	1	many		1	
kingfisher	s	0.3		1	5			
bee-eater	s	>1		1	6.5		1	
swallow	s	>1		2				
nightjar	s	>1		1	<3			
cuckoo	s	>1		1	<2			
jay	S	>1		1	many		1	
pigeon	s	0.5	8 I	10	<3	0.5	1	
turtle dove	S	0.4 <i>u</i>	8 I	≤2	<3		1	
wood pigeon	S	0.4 <i>u</i>	30 I	≤2	<3		1	
hen	М	>1		many	many	1.7		
partridge	М	>1	>16 l	1	many	0.6		
raven	М	>1		1	4	0.6	1	
kite	М	>1		1	2	0.6		
hawk	М	>1		1				
kestral	М	>1		1	4			
Ural owl?	М	>1		1	4			
peacock	L	3	25 I	1	<12	1		
goose	L	>1		1		1		
bustard	L	>1		1		1		
vulture	L	>1		1	2			
eagle	L	>1		1	3	1		
ostrich	L	>1			many			
		I						I

LEGEND

 $S \quad \text{adult body size: } \textit{Large, Medium, Small}$

M age at maturity

L lifespan: I simple lifespan, rl reproductive lifespan

C clutches per year

N clutch size

G time to hatching or fledging

P relative perfection: Perfect, Imperfect

* When Aristotle says that 'very few birds propagate in their first year' he certainly means that they propagate in their second, that is, the following breeding season, typically spring.

B6. RELATIONSHIPS AMONG SOME LIFE-HISTORY FEATURES REPORTED BY ARISTOTLE, ILLUSTRATED USING MODERN DATA

In GA IV and LBV, Aristotle claims that various life-history features are associated with each other in certain ways. His claims are correct at least for placental mammals. Below, I illustrate four of these associations using data from the panTHERIA database of mammalian life history.* I exclude Orders not seen by Aristotle (e.g. Marsupialia) or else excluded from his tetrapods (Chiroptera, Cetacea), and then model the log-transformed data using linear regression. Four of Aristotle's claimed relationships are shown: brood size and adult body size (negative), gestation time and longevity (positive), adult body size and longevity (positive) and fecundity and adult body size (negative). Much more sophisticated analyses of this sort have often been published.† They usually aim to take various confounding effects into account and so reduce, but hardly eliminate, the difficulty of inferring causal relations from comparative data.

[C206]

* JONES et al. (2009).

† For example, MILLAR and ZAMMUTO (1983), DERRICKSON (1992), STARCK and RICKLEFS (1998), BIELBY et al. (2007).